Backward Jeu de Taquin Slides for Composition Tableaux and a Noncommutative Pieri Rule

نویسنده

  • Vasu Tewari
چکیده

We give a backward jeu de taquin slide analogue on semistandard reverse composition tableaux. These tableaux were first studied by Haglund, Luoto, Mason and van Willigenburg when defining quasisymmetric Schur functions. Our algorithm for performing backward jeu de taquin slides on semistandard reverse composition tableaux results in a natural operator on compositions that we call the jdt operator. This operator in turn gives rise to a new poset structure on compositions whose maximal chains we enumerate. As an application, we also give a noncommutative Pieri rule for noncommutative Schur functions that uses the jdt operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-theoretic Schubert calculus for OG.n; 2nC 1/ and jeu de taquin for shifted increasing tableaux

We present a proof of a Littlewood–Richardson rule for the K-theory of odd orthogonal Grassmannians OG.n; 2n C 1/, as conjectured by Thomas–Yong (2009). Specifically, we prove that rectification using the jeu de taquin for increasing shifted tableaux introduced there, is well-defined and gives rise to an associative product. Recently, Buch–Ravikumar (2012) proved a Pieri rule for OG.n; 2nC1/ th...

متن کامل

A Jeu De Taquin Theory for Increasing Tableaux, with Applications to K-theoretic Schubert Calculus

We introduce a theory of jeu de taquin for increasing tableaux, extending fundamental work of [Schützenberger ’77] for standard Young tableaux. We apply this to give a new combinatorial rule for the K-theory Schubert calculus of Grassmannians via K-theoretic jeu de taquin, providing an alternative to the rules of [Buch ’02] and others. This rule naturally generalizes to give a conjectural root-...

متن کامل

The Action of the Hall-littlewood Vertex Operator

The vertex operators Hm act on the Hall-Littlewood polynomials HX; t] with the property that HmHX; t] = H (m;;) X; t]. We present a combinatorial rule for computing the action of Hm on the schur function basis which interpolates the Pieri formula for multiplication by hmX] and the schur function vertex operator. This rule suggests the existence of an operator on column strict tableaux of conten...

متن کامل

Jeu-de-taquin promotion and a cyclic sieving phenomenon for semistandard hook tableaux

Jeu-de-taquin promotion yields a bijection on the set of semistandard λ-tableaux with entries bounded by k. In this note, we determine the order of jeu-de-taquin promotion on the set of semistandard hook tableaux CST ((n−m, 1m), k), with entries bounded by k, and on the set of semistandard hook tableaux with fixed content α, CST ((n−m, 1m), k, α). We give a bijection between CST ((n−m, 1m), k, ...

متن کامل

K-theory of Minuscule Varieties

Based on Thomas and Yong’s K-theoretic jeu de taquin algorithm, we prove a uniform Littlewood-Richardson rule for the K-theoretic Schubert structure constants of all minuscule homogeneous spaces. Our formula is new in all types. For the main examples of Grassmannians of type A and maximal orthogonal Grassmannians it has the advantage that the tableaux to be counted can be recognized without ref...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015